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In systems where the standard 𝛼 effect is inoperative, one often explains the existence of
mean magnetic fields by invoking the ‘incoherent 𝛼 effect’, which appeals to fluctuations
of the mean kinetic helicity. Previous studies, while considering fluctuations in the mean
kinetic helicity, treated the mean turbulent kinetic energy as a constant, despite the fact that
both these quantities involve second-order velocity correlations. The mean turbulent kinetic
energy causes both turbulent diffusion and diamagnetic pumping of the mean magnetic field.
In this work, we use a double-averaging procedure to analytically show that fluctuations of
the mean turbulent kinetic energy (giving rise to 𝜂-fluctuations, where 𝜂 is the turbulent
diffusivity) can lead to the growth of a large-scale magnetic field even when the kinetic
helicity is zero pointwise. Constraints on the operation of such a dynamo are expressed
in terms of dynamo numbers that depend on the correlation length, correlation time, and
strength of these fluctuations. In the white-noise limit, we find that these fluctuations reduce
the overall turbulent diffusion, while also contributing a drift term which does not affect the
growth of the field. We also study the effects of nonzero correlation time and anisotropy.
Diamagnetic pumping, which arises due to inhomogeneities in the turbulent kinetic energy,
leads to growing mean field solutions even when the 𝜂-fluctuations are isotropic. Our results
suggest that fluctuations of the turbulent kinetic energy may be relevant in astrophysical
contexts.

1. Introduction
Astrophysicalmagnetic fields are observed on galactic, stellar, and planetary scales (Branden-
burg & Subramanian 2005; Jones 2011). Some stars even exhibit periodic magnetic cycles.
TheEarth itself has a dipolarmagnetic field that shields it from the solarwind.Dynamo theory
studies the mechanisms behind the generation and maintenance of these large-scale magnetic
fields by fluid flows correlated at much smaller scales (Ruzmaikin et al. 1988; Brandenburg
& Subramanian 2005; Jones 2011; Rincon 2019). Mean-field magnetohydrodynamics takes
advantage of scale-separation to make the problem analytically tractable (Moffatt 1978;
Krause & Rädler 1980).
The turbulent electromotive force, which is determined by correlations between the

fluctuating velocity and magnetic fields, plays a crucial role in mean-field dynamo theory.
For homogeneous and isotropic turbulence, using the quasilinear approximation, one can
express the turbulent electromotive force in terms of the turbulent transport coefficients 𝛼
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(which is proportional to the mean kinetic helicity) and 𝜂 (the turbulent diffusivity, which
is proportional to the mean kinetic energy) when the magnetic field is weak (Moffatt 1978,
chapter 7). The contribution of 𝛼, if nonzero, may cause growth of the mean magnetic field,
while 𝜂 always dissipates it when the turbulence is homogeneous.
Even when the mean kinetic helicity is zero, Kraichnan (1976) found that fluctuations

of the kinetic helicity can suppress the turbulent diffusivity. If the fluctuations are strong
or long-lived enough, the effective diffusivity may become negative, leading to growth of
the large-scale magnetic field (Kraichnan 1976; Moffatt 1978, sec. 7.11; Singh 2016). This
effect, usually referred to as the ‘incoherent 𝛼 effect’, has also been studied in combination
with shear (Sokolov 1997; Vishniac & Brandenburg 1997; Silant’ev 2000; Sridhar & Singh
2014). The ‘incoherent 𝛼-shear dynamo’ has been invoked (Brandenburg et al. 2008) to
explain the generation of a large-scale magnetic field in simulations of nonhelical turbulence
with background shear (Yousef et al. 2008; Singh & Jingade 2015).
To derive his result, Kraichnan (1976) used a process of double-averaging, where one first

obtains the mean-field equations at some mesoscale, and then fluctuations of the mesoscale
transport coefficients may lead to effects at some larger scale upon subsequent averaging.
There are two viewpoints (not mutually exclusive) on the applicability of this method. One
is that we require the system to have scale separation, such that the turbulent spectra peak at
some small scale, while averaged quantities themselves fluctuate at somemesoscale, and then
there exists an even larger scale where a magnetic field can grow (e.g. Moffatt 1978, p. 178).
The other is to think of multiscale averaging as a renormalization procedure which tells us
something about the contributions of higher moments of the velocity field to the turbulent
transport coefficients (e.g. Moffatt 1983, sec. 11; Silant’ev 2000, p. 341). In support of the
latter, we note that Knobloch (1977)† and Nicklaus & Stix (1988) have used a cumulant
expansion to calculate the lowest-order corrections to the quasilinear approximation. In
agreement with the results obtained by multiscale averaging, they find that the turbulent
diffusivity is suppressed.
Regardless of one’s viewpoint, it seems natural to wonder why fluctuations of the helicity

should have a more privileged position than fluctuations of the kinetic energy. In simulations,
it is found that fluctuations of 𝛼 coexist with fluctuations of 𝜂 (e.g. Brandenburg et al. 2008,
fig. 10). While Silant’ev (1999, 2000) has considered fluctuations of the turbulent diffusivity,
he has not included the effect of diamagnetic pumping (expulsion of the magnetic field from
turbulent regions); the latter is a natural consequence of spatial variations of the turbulent
kinetic energy, and thus cannot be ignored.
Here, we explore the effects of mesoscale fluctuations of the turbulent magnetic diffusivity,

with nonzero correlation time, on the evolution of the large-scale magnetic field. The
procedure we follow is the same as that of Singh (2016).
In section 2, we derive the evolution equation for the large-scale magnetic field, along

with an expression for its growth rate, by using the quasilinear approximation. In section 3,
we simplify the expression for the growth rate, assuming the fluctuations of 𝜂 are isotropic.
In section 4, we explain how the growth rate is modified by anisotropy. In section 5, we
relate the growth in some regimes to a negative effective turbulent diffusivity. In section 6,
we show how to estimate the dynamo numbers in astrophysical systems, taking the solar
photosphere as an example. Finally, we discuss the implications of our results and possible
future directions in section 7.

† Nicklaus & Stix (1988) point out some errors in this paper.
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2. Derivation of the evolution equation and the growth rate
2.1. Setup and assumptions

The mean magnetic field, 𝑩, evolves according to (e.g. Moffatt 1978, eq. 7.7)

𝜕𝑩

𝜕𝑡
= ∇×(𝑽 × 𝑩 + E) + 𝜂𝑚∇2𝑩 (2.1)

where𝑽 is the mean velocity; 𝜂𝑚 is the microscopic magnetic diffusivity; andE, the turbulent
electromotive force (EMF), is related to the correlation between the fluctuating velocity and
magnetic fields. For weakly inhomogeneous nonhelical turbulence, the EMF is given by
(Roberts & Soward 1975, eq. 3.11)

E = −1
2
∇𝜂 × 𝑩 − 𝜂∇×𝑩 (2.2)

where 𝜂 is the turbulent diffusivity (related to the turbulent kinetic energy in simple
closures). We note that Silant’ev (1999, 2000) did not consider the first term above. For
stratified turbulence, or in the presence of small-scale magnetic fields, additional terms arise
(Vainshtein & Kichatinov 1983), but we ignore those effects in this work. As mentioned
in the introduction, the effect of helical turbulence (𝛼) has been extensively studied, so we
restrict ourselves to turbulence that is nonhelical pointwise.
Although the mean-field approach does not formally require scale-separation, we associate

averages with length/time scales for clarity of exposition. Let us assume that 𝜂 fluctuates
at length/time scales (henceforth referred to as the mesoscales) much larger than than the
scales at which the turbulent velocity fluctuates. We employ a double-averaging approach
(Kraichnan 1976; Singh 2016), in which we treat 𝜂 (at the mesoscale) as a stochastic scalar
field which is a function of both position and time (i.e. 𝜂 = 𝜂(𝒙, 𝑡)). For any mesoscale
quantity �, we use 〈�〉 and � to denote its averages at the larger scale. We assume this
average satisfies Reynolds’ rules (e.g. Monin & Yaglom 1971, sec. 3.1).
If we set the mean velocity to zero, ignore the microscopic diffusivity (which is usually

much smaller than the turbulent diffusivity in the systems of interest), and use equation 2.2,
we can write equation 2.1 as

𝜕𝑩

𝜕𝑡
= ∇×

(
−1
2
∇𝜂 × 𝑩 − 𝜂∇×𝑩

)
(2.3)

One of the most widely used closures in dynamo theory is the quasilinear approximation
(also called the first-order smoothing approximation, FOSA; or the second-order correlation
approximation, SOCA) (e.g. Moffatt 1978, sec. 7.5; Krause & Rädler 1980, sec. 4.3) The
quasilinear approximation is rigorously valid onlywhen either themagnetic Reynolds number
(the ratio of the diffusive to the advective timescale) or the Strouhal number (the ratio of
the velocity correlation time to its turnover time) are small (Krause & Rädler 1980, p. 49).
The former is never small in the astrophysical systems of interest, while it is unclear if the
latter is small. Nevertheless, in the context of mean-field dynamo theory, the quasilinear
approximation often remains qualitatively correct well outside its domain of formal validity.
More complicated closures such as the EDQNM closure (e.g. Pouquet et al. 1976) and the
DIA (Kraichnan 1977) are extremely difficult to work with.
In section 2.3, we assume the fluctuations of 𝜂 are statistically homogeneous, stationary,

and separable in order to obtain an integro-differential equation for the large-scale magnetic
field. In section 2.4, we simplify this equation by assuming the fluctuations of 𝜂 are white
noise, while in section 2.5, we also keep terms linear in the correlation time of 𝜂.
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2.2. Evolution equation in Fourier space
We now move to Fourier space with

𝑓̃ (𝒌, 𝑡) ≡
∫

d𝒙
(2𝜋)3

𝑒𝑖𝒌 ·𝒙 𝑓 (𝒙, 𝑡) (2.4)

in which case the convolution theorem takes the form∫
d𝒙

(2𝜋)3
𝑒𝑖𝒌 ·𝒙 𝑓 (𝒙)𝑔(𝒙) =

∫
d 𝒑 𝑓̃ ( 𝒑)𝑔̃(𝒌 − 𝒑) (2.5)

Equation 2.3 then becomes (omitting the temporal argumentswhenever there is no ambiguity)

𝜕 𝑩̃(𝒌)
𝜕𝑡

=

∫
d 𝒑 𝒌 ×

[(
𝒌 + 𝒑

2

)
×

(
𝜂(𝒌 − 𝒑) 𝑩̃( 𝒑)

)]
(2.6)

Taking the average of the above, we obtain

𝜕

𝜕𝑡

〈
𝑩̃(𝒌)

〉
=

∫
d 𝒑 𝒌 ×

[(
𝒌 + 𝒑

2

)
×

{
〈𝜂(𝒌 − 𝒑)〉

〈
𝑩̃( 𝒑)

〉
+

〈
𝜇(𝒌 − 𝒑) 𝒃̃( 𝒑)

〉}]
(2.7)

wherewe have split themesoscale fields into their mean and fluctuating parts, i.e. 𝑩̃ =

〈
𝑩̃
〉
+ 𝒃̃

and 𝜂 = 〈𝜂〉 + 𝜇. We write the equation for 𝒃̃ as

𝜕 𝒃̃(𝒌)
𝜕𝑡

=

∫
d 𝒑 𝒌 ×

[ (
𝒌 + 𝒑

2

)
×

(
〈𝜂(𝒌 − 𝒑)〉 𝒃̃( 𝒑) + 𝜇(𝒌 − 𝒑)

〈
𝑩̃( 𝒑)

〉
+ 𝜇(𝒌 − 𝒑) 𝒃̃( 𝒑) −

〈
𝜇(𝒌 − 𝒑) 𝒃̃( 𝒑)

〉 )] (2.8)

We now apply the quasilinear approximation, where the equations for the fluctuating fields
are truncated by keeping only terms which are at most linear in the fluctuating fields. We
then obtain

𝜕 𝒃̃(𝒌)
𝜕𝑡

=

∫
d 𝒑 𝒌 ×

[ (
𝒌 + 𝒑

2

)
×

(
〈𝜂(𝒌 − 𝒑)〉 𝒃̃( 𝒑) + 𝜇(𝒌 − 𝒑)

〈
𝑩̃( 𝒑)

〉 )]
(2.9)

2.3. Homogeneity and separability
To simplify the preceding expression, we assume that the moments of 𝜂(𝒙, 𝑡) are statistically
homogeneous and stationary. Further, we assume that 〈𝜇(𝒙, 𝜏1)𝜇(𝒚, 𝜏2)〉 can be written as
the product of a temporal correlation function and a spatial correlation function. In Fourier
space, these assumptions can be expressed as

〈𝜂(𝒌, 𝑡)〉 = 𝜂 𝛿(𝒌) (2.10a)

〈𝜇( 𝒑, 𝜏1)𝜇(𝒒, 𝜏2)〉 = 𝑄( 𝒑) 𝑆(𝜏1 − 𝜏2) 𝛿( 𝒑 + 𝒒) (2.10b)

For 𝑆, we require

2
∫ ∞

0
𝑆(𝑡) d𝑡 = 1 (2.11)

and define the correlation time of 𝜂 as

𝜏𝜂 ≡ 2
∫ ∞

0
𝑡𝑆(𝑡) d𝑡 (2.12)
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We can then write∫
d 𝒑 𝒌 ×

[ (
𝒌 + 𝒑

2

)
×

(
〈𝜂(𝒌 − 𝒑)〉 𝒃̃( 𝒑)

) ]
= −𝜂𝑘2 𝒃̃(𝒌) (2.13)

and ∫
d 𝒑 𝒌 ×

[ (
𝒌 + 𝒑

2

)
×

(
〈𝜂(𝒌 − 𝒑)〉

〈
𝑩̃( 𝒑)

〉) ]
= −𝜂𝑘2

〈
𝑩̃(𝒌)

〉
(2.14)

Using equation 2.13, equation 2.9 can be written as

𝜕 𝒃̃(𝒌)
𝜕𝑡

= − 𝜂𝑘2 𝒃̃(𝒌) +
∫
d 𝒑 𝒌 ×

[(
𝒌 + 𝒑

2

)
×

〈
𝑩̃( 𝒑)

〉]
𝜇(𝒌 − 𝒑) (2.15)

which gives us

𝒃̃(𝒌, 𝑡) =
∫ 𝑡

0
d𝜏

∫
d 𝒑 𝑒−𝜂𝑘

2 (𝑡−𝜏) 𝒌 ×
[(

𝒌 + 𝒑

2

)
×

〈
𝑩̃( 𝒑, 𝜏)

〉]
𝜇(𝒌 − 𝒑, 𝜏)

+ 𝒃̃(𝒌, 0)
(2.16)

We assume that the initial fluctuations of the mesoscale magnetic field are uncorrelated with
𝜇. Using the above along with equation 2.10b, we can write〈

𝜇(𝒒, 𝑡) 𝒃̃(𝒌, 𝑡)
〉
=

∫ 𝑡

0
d𝜏 𝑒−𝜂𝑘

2 (𝑡−𝜏) 𝒌 ×
[(
𝒌 + 𝒒

2

)
×

〈
𝑩̃(𝒌 + 𝒒, 𝜏)

〉]
𝑄(𝒒) 𝑆(𝑡 − 𝜏)

(2.17)

Putting the above in equation 2.7 gives us an equation for
〈
𝑩̃(𝒌 + 𝒒, 𝜏)

〉
. However, this is an

integro-differential equation which is difficult to solve in general. The resulting equation can
be simplified by assuming 𝜏𝜂 is small. In section 2.4, we assume 𝜏𝜂 = 0 and simplify the
evolution equation for the large-scale magnetic field. In section 2.5, we simplify the evolution
equation neglecting 𝑂 (𝜏2𝜂) terms.

2.4. Evolution equation with white-noise fluctuations
Assuming 𝑆(𝑡) = 𝛿(𝑡), we write equation 2.17 as〈

𝜇(𝒒, 𝑡) 𝒃̃(𝒌, 𝑡)
〉
=
1
2
𝒌 ×

[(
𝒌 + 𝒒

2

)
×

〈
𝑩̃(𝒌 + 𝒒, 𝑡)

〉]
𝑄(𝒒) (2.18)

Recalling that 𝒌 ·
〈
𝑩̃(𝒌, 𝑡)

〉
= 0, we can use the above to write∫

d 𝒑 𝒌 ×
[(

𝒌 + 𝒑

2

)
×

〈
𝜇(𝒌 − 𝒑, 𝑡) 𝒃̃( 𝒑, 𝑡)

〉]
=

∫
d𝒔
1
8
𝑄(𝒔)

{
4𝑘4 − 8𝑘2𝒌 · 𝒔 + 3 (𝒌 · 𝒔)2 + 2𝑘2𝑠2 − 𝑠2𝒌 · 𝒔

} 〈
𝑩̃(𝒌, 𝑡)

〉 (2.19)

where 𝒔 ≡ 𝒌 − 𝒑. Defining

𝐴(0) ≡ 𝑄(0) , 𝐴(1)
𝑖

≡ 𝜕𝑄(𝒚)
𝜕𝑦𝑖

����
𝒚=0

, 𝐴
(2)
𝑖 𝑗

≡ 𝜕2𝑄(𝒚)
𝜕𝑦𝑖𝜕𝑦 𝑗

����
𝒚=0

, 𝐴
(3)
𝑖

≡ 𝜕3𝑄(𝒚)
𝜕𝑦𝑖𝜕𝑦 𝑗𝜕𝑦 𝑗

����
𝒚=0

(2.20)
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we write∫
d 𝒑 𝒌 ×

[(
𝒌 + 𝒑

2

)
×

〈
𝜇(𝒌 − 𝒑, 𝑡) 𝒃̃( 𝒑, 𝑡)

〉]
=
1
8

{
4𝐴(0) 𝑘4 − 8𝑖𝐴(1)

𝑖
𝑘2𝑘𝑖 − 3𝐴(2)

𝑖 𝑗
𝑘𝑖𝑘 𝑗 − 2𝐴(2)

𝑖𝑖
𝑘2 + 𝑖𝐴(3)

𝑖
𝑘𝑖

} 〈
𝑩̃(𝒌, 𝑡)

〉 (2.21)

Putting this in equation 2.7 and using equation 2.14, we obtain

𝜕

𝜕𝑡

〈
𝑩̃(𝒌)

〉
=

(
−𝜂𝑘2 + 𝑔(𝒌)

) 〈
𝑩̃(𝒌)

〉
+ 𝑖ℎ(𝒌)

〈
𝑩̃(𝒌)

〉
(2.22)

where

𝑔(𝒌) ≡ − 3
8
𝐴
(2)
𝑖 𝑗
𝑘𝑖𝑘 𝑗 −

1
4
𝐴
(2)
𝑖𝑖
𝑘2 + 1

2
𝐴(0) 𝑘4 (2.23a)

ℎ(𝒌) ≡ 1
8
𝐴
(3)
𝑖
𝑘𝑖 − 𝐴(1)

𝑖
𝑘2𝑘𝑖 (2.23b)

We see that 𝑔(𝒌) describes corrections (including hyperdiffusion) to the turbulent diffusivity,
while the term involving ℎ(𝒌) describes advection of the large-scale magnetic field with an
effective velocity 𝐴(3)

𝑖
/8 − 𝐴(1)

𝑖
𝑘2.

To aid the interpretation of equation 2.22, we note that if the spatial correlation function
of the fluctuations of 𝜂 is an isotropic Gaussian (see appendix A), we can write

𝜕

𝜕𝑡

〈
𝑩̃(𝒌)

〉
= −

(
𝜂 − 9
8
𝛽

)
𝑘2

〈
𝑩̃(𝒌)

〉
+𝑂 (𝑘4) , (2.24)

where 𝛽 ≡ 𝐴(0)/𝑙2𝑐 > 0 represents the diffusivity arising from fluctuations of 𝜂 with a
correlation length 𝑙𝑐 . Thus, we find that fluctuations of 𝜂 reduce the turbulent diffusion of
the large-scale magnetic field.

2.5. Evolution equation with nonzero correlation time
We expand 〈

𝑩̃( 𝒑, 𝜏)
〉
=

〈
𝑩̃( 𝒑, 𝑡)

〉
− (𝑡 − 𝜏) 𝜕

𝜕𝑡

〈
𝑩̃( 𝒑, 𝑡)

〉
+𝑂 ((𝑡 − 𝜏)2) (2.25)

The idea is that when we substitute this into equation 2.17, assume 𝑡 � 𝜏𝜂 , and perform the
time integral, the powers of (𝑡 − 𝜏) become powers of 𝜏𝜂 . The convergence of this series
requires that the large-scale magnetic field vary on a timescale much larger than 𝜏𝜂 . Note
that on the RHS of the above, we can neglect 𝑂 (𝑡 − 𝜏) contributions to 𝜕

𝜕𝑡

〈
𝑩̃( 𝒑, 𝑡)

〉
and use

equation 2.22. Similarly, we can expand

exp
(
−𝜂𝑘2 (𝑡 − 𝜏)

)
= 1 − (𝑡 − 𝜏) 𝜂𝑘2 +𝑂 ((𝑡 − 𝜏)2) (2.26)

We then write equation 2.17 as〈
𝜇(𝒌 − 𝒑, 𝑡) 𝒃̃( 𝒑, 𝑡)

〉
= 𝑄(𝒌 − 𝒑) 𝒑 ×

[(
𝒌 + 𝒑

2

)
×B(𝒌, 𝑡)

]
(2.27)

where

B(𝒌, 𝑡) ≡ 1
2

〈
𝑩̃(𝒌, 𝑡)

〉
−
𝜏𝜂

2
𝜕

𝜕𝑡

〈
𝑩̃(𝒌, 𝑡)

〉
−

〈
𝑩̃(𝒌, 𝑡)

〉 𝜏𝜂
2
𝜂𝑘2 (2.28)
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Using equation 2.22, we write

B(𝒌, 𝑡) = 1
2

〈
𝑩̃(𝒌, 𝑡)

〉
−
𝜏𝜂

2
𝑔(𝒌)

〈
𝑩̃(𝒌, 𝑡)

〉
−
𝑖𝜏𝜂

2
ℎ(𝒌)

〈
𝑩̃(𝒌, 𝑡)

〉
(2.29)

We note that 𝒌 ·B(𝒌, 𝑡) = 0 and use equations 2.27 and 2.29 to write∫
d 𝒑 𝒌 ×

[(
𝒌 + 𝒑

2

)
×

〈
𝜇(𝒌 − 𝒑, 𝑡) 𝒃̃( 𝒑, 𝑡)

〉]
= [𝑔(𝒌) + 𝑖ℎ(𝒌)]

[
1 − 𝜏𝜂𝑔(𝒌) − 𝑖𝜏𝜂ℎ(𝒌)

] 〈
𝑩̃(𝒌, 𝑡)

〉
(2.30)

where ℎ and 𝑔 are defined in equations 2.23. Putting this in equation 2.7 and using equation
2.14, we write
𝜕

𝜕𝑡

〈
𝑩̃(𝒌)

〉
= [𝑔(𝒌) + 𝑖ℎ(𝒌)]

[
1 − 𝜏𝜂𝑔(𝒌) − 𝑖𝜏𝜂ℎ(𝒌)

] 〈
𝑩̃(𝒌)

〉
− 𝜂𝑘2

〈
𝑩̃(𝒌)

〉
+𝑂 (𝜏2𝜂)

(2.31)

2.6. Growth rate of the large-scale magnetic field
Let us now focus on the problem of whether a particular Fourier mode of the large-scale
magnetic field grows or decays. We assume

〈
𝑩̃(𝒌, 𝑡)

〉
∝ exp(𝜆𝑡). Plugging this into equation

2.31 and taking its real part, we find

Re(𝜆) = − 𝜂𝑘2 + 𝑔(𝒌) − 𝜏𝜂 [𝑔(𝒌)]2 + 𝜏𝜂 [ℎ(𝒌)]2 +𝑂 (𝜏2𝜂) (2.32)

where ℎ and 𝑔 are defined in equations 2.23. From the fact that above, only [𝑔(𝒌)]2 contains
a 𝑘8 term, we can see that the growth rate always becomes negative for large-enough 𝑘
(small-enough scales) as long as 𝜏𝜂 ≠ 0. Note that while in the white-noise case, ℎ(𝒌) only
contributed a drift term, it now affects the growth rate as well.
Since we assumed the large-scale magnetic field varies on timescales much larger than 𝜏𝜂 ,

our derivation is self-consistent only when
��𝜏𝜂𝜆�� � 1.

3. Dynamo numbers when the fluctuations are isotropic
If 𝑄(𝒚) is isotropic,† we can write the quantities defined in equation 2.20 as

𝐴
(1)
𝑖

= 0 , 𝐴
(2)
𝑖 𝑗

= 𝛿𝑖 𝑗
𝐴
(2)
𝑘𝑘

3
, 𝐴

(3)
𝑖

= 0 (3.1)

so that

ℎ(𝒌) = 0 , 𝑔(𝒌) = 4𝐴
(0) 𝑘4 − 3𝑘2𝐴(2)

𝑚𝑚

8
(3.2)

Equation 2.32 can then be written as

Re(𝜆) = − 𝑘2
(
𝜂 + 3𝐴

(2)
𝑚𝑚

8

)
+ 𝑘4

(
𝐴(0)

2
−
9𝜏𝜂
64

[
𝐴
(2)
𝑚𝑚

]2)
+
3𝜏𝜂𝐴(0)𝐴(2)

𝑚𝑚𝑘
6

8
−
𝜏𝜂

[
𝐴(0) ]2 𝑘8
4

(3.3)

† Mirror symmetry is not required.
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Figure 1: The mode growth rate (𝑇 Re(𝜆), equation 3.5) as a function of the wavenumber
for two combinations of D1 and D2.

If we further define‡

D1 ≡ −3𝐴
(2)
𝑚𝑚

8𝜂
, D2 ≡

9𝜏𝜂
32

[
𝐴
(2)
𝑚𝑚

]2
𝐴(0) , 𝑙𝑐 ≡

√︄
−3𝐴

(0)

𝐴
(2)
𝑖𝑖

, 𝐾 ≡ 𝑘𝑙𝑐 , 𝑇 ≡ 𝑙2𝑐
𝜂

(3.4)

we can write equation 3.3 as

𝑇 Re(𝜆) = −𝐾2 (1 − D1) +
4D1𝐾4
9

(1 − D2) −
32D1D2𝐾6

81
− 64D1D2𝐾

8

729
(3.5)

In appendix A, we express the dynamo numbers in terms of more observationally relevant
quantities by assuming a particular form for the correlation function 𝑄.
Figure 1 shows the growth rate (equation 3.5) for two sets of dynamo numbers. We see that

depending on the parameters, the growth rate may peak at large scales or at small scales.
To understand the qualitative behaviour of equation 3.5, we can schematically write it as

Re(𝜆) =


−𝑘2 − 𝑘4 − 𝑘6 − 𝑘8 ; D2 > 1, D1 < 1
−𝑘2 + 𝑘4 − 𝑘6 − 𝑘8 ; D2 < 1, D1 < 1
𝑘2 + 𝑘4 − 𝑘6 − 𝑘8 ; D2 < 1, D1 > 1
𝑘2 − 𝑘4 − 𝑘6 − 𝑘8 ; D2 > 1, D1 > 1

(3.6)

In the first case, Re(𝜆) is always negative, and so there is no dynamo. In the last two cases,
Re(𝜆) is positive for small 𝑘 and becomes negative for large wavenumbers. In the second
regime, it seems to be difficult to say anything concrete (depending on the values of the
coefficients, one can either have growth in a range of wavenumbers or growth nowhere).
Since 3.5 is a polynomial in 𝐾 , one can easily solve for its extrema. In figure 2, we show

the dynamo growth rate (where positive) and the wavenumber of the resulting large-scale
field, as a function of D1 and D2.
If we drop the𝑂 (𝐾6) terms in equation 3.5 (this does not change the qualitative behaviour

whenD2 > 1), we can estimate that that ifD1 > 1, the growth rate attains a maximum value

‡ If the correlation function attains a maximum at zero separation, 𝐴(2)
𝑚𝑚 < 0. This implies D1 > 0.
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Figure 2: Left: The peak growth rate (𝑇 Re(𝜆), equation 3.5). In the white regions, the
growth rate is negative for all 𝐾 . Right: The wavenumber (𝐾) at which the growth rate

peaks. Recall that for a mode with wavelength 𝑙𝑐 , the wavenumber would be
𝐾 = 2𝜋 ≈ 100.8.

at 𝐾peak, where

𝐾peak ≈

√︄
9 (D1 − 1)
8D1 (D2 − 1)

, [𝑇 Re(𝜆)]max ≈
9 (D1 − 1)2

16D1 (D2 − 1)
(3.7)

Broadly speaking, there are two kinds of regimes in which the dynamo is excited. One,
D1 > 1, corresponds to the fluctuations being strong enough that the effective diffusivity
itself becomes negative (but the growth itself is still cut off at small scales due to higher-
order terms). The other,D2 < 1 (withD1 also < 1), corresponds to growth with the effective
diffusion remaining positive; one can see, however, from figure 2 that this growth happens
at smaller scales than in the other regime (but may still be at scales larger than 𝑙𝑐). While
D2 � 1 can formally lead to growing solutions regardless of the value of D1, the growth
then occurs at scales . 𝑙𝑐 .

4. The effect of anisotropy
Although we have not done so so far, it seems natural to assume that the temporal correlation
function 𝑆, that appears in equation 2.10b, is even. This would allow one to take

∫ ∞
−∞ 𝑆(𝑡) d𝑡 =

1 and define the correlation time of 𝜂 as 𝜏𝜂 ≡
∫ ∞
−∞ |𝑡 | 𝑆(𝑡) d𝑡.

Because 𝜇 is a scalar, assuming its double correlation is invariant under time-reversal
immediately implies 𝑄(𝒌) = 𝑄(−𝒌). We then conclude that

𝐴
(1)
𝑖

= 𝐴
(3)
𝑖

= ℎ(𝒌) = 0 (4.1)

when the fluctuations of 𝜂 are separable, homogeneous, stationary, and time-reversal-
invariant; this holds even without assuming that the fluctuations of 𝜂 are isotropic! We
now study the dynamo assuming the double correlation of 𝜇 is time-reversal invariant and
anisotropic.
Let us choose the coordinate axes 1, 2, 3 to be along the principal axes of the matrix 𝐴(2)

(defined in equation 2.20), with the corresponding eigenvalues being−𝑎1,−𝑎2, and−𝑎3 (such
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Figure 3: The mode growth rate (𝑇 Re(𝜆), equation 4.6) as a function of the wavenumber.
In all the cases, we have taken D1 = 2 and D2 = 5. Other parameters not mentioned in the

legend have been set to zero.

that 𝑎1 > 𝑎3 > 𝑎2). By analogy with equation 3.4, one can define the correlation length
along each axis as 𝑙 (𝑖)𝑐 ≡

√︁
𝐴(0)/𝑎𝑖 . It is physically reasonable to assume𝑄(𝒚) attains a local

maximum at the origin, and that its correlation length is finite. This means 𝑎1, 𝑎2, 𝑎3 > 0.
Analogous to equation 3.4, we define

D1 ≡
9𝑎3
8𝜂

, D2 ≡
81𝜏𝜂𝑎23
32𝐴(0) , 𝑙𝑐 ≡

√︄
𝐴(0)

𝑎3
, 𝑲 ≡ 𝒌𝑙𝑐 , 𝑇 ≡ 𝑙2𝑐

𝜂
(4.2)

We also define the new quantities

𝜒1 ≡
𝑎1

𝑎3
− 1 , 𝜒2 ≡ 1 −

𝑎2

𝑎3
, 𝑛1 ≡

|𝐾1 |
𝐾

, 𝑛2 ≡
|𝐾2 |
𝐾

(4.3)

and a modified dynamo number

D̃1 ≡ D1
[
1 + 𝜒1

9

(
2 + 3𝑛21

)
− 𝜒2

9

(
2 + 3𝑛22

)]
(4.4)

Since 0 6 𝜒2 < 1, 0 6 𝜒1 < ∞, and 0 6 𝑛1, 𝑛2 6 1, we find that D̃1 > 0. We write 𝑔(𝒌)
(equation 2.23) as

𝑇𝑔(𝒌) = D̃1𝐾2 +
4D1
9

𝐾4 (4.5)

Noting that 𝜏𝜂/𝑇 = 4D2/(9D1), one can substitute equation 4.5 in equation 2.32 to obtain
the following expression for the growth rate:

𝑇 Re(𝜆) = 𝐾2
(
D̃1 − 1

)
+ 4D1𝐾

4

9

(
1 −

D2D̃21
D21

)
− 32D2D̃1𝐾

6

81
− 64D1D2𝐾

8

729
(4.6)

As expected, this reduces to equation 3.5 on setting D̃1 = D1. Replacing D1 → D̃1 and
D2 → D2D̃21/D

2
1 , our comments in section 3 on the qualitative behaviour of equation 3.5

also apply to this equation. Unlike in the isotropic case, the growth rate now depends on the
direction of 𝑲 through the direction cosines 𝑛1 and 𝑛2. Figure 3 shows the growth rate as a
function of the wavenumber for various parameter values.
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5. Suppression of turbulent diffusion
Neglecting terms with more than two spatial derivatives of 〈𝑩〉, equation 2.31 can be written
as

𝜕

𝜕𝑡

〈
𝑩̃(𝒌)

〉
= − 𝜂𝑘2

〈
𝑩̃(𝒌)

〉
− 1
8

(
3𝑘𝑚𝑘𝑛𝐴(2)

𝑚𝑛 + 2𝑘2𝐴(2)
𝑚𝑚

) 〈
𝑩̃(𝒌)

〉
+ 𝑖

8
𝑘𝑚𝐴

(3)
𝑚

〈
𝑩̃(𝒌)

〉
+
𝜏𝜂

64
𝑘𝑚𝑘𝑖𝐴

(3)
𝑚 𝐴

(3)
𝑖

〈
𝑩̃(𝒌)

〉
+𝑂 (𝑘3)

(5.1)

Following the reasoning used in section 4 for D̃1, one can see that the coefficient of
〈
𝑩̃(𝒌)

〉
in the second term above is always positive as long as the spatial correlation function of the
𝜂-fluctuations attains a maximum at zero separation; the turbulent diffusion is suppressed.
This can be seen more clearly in equation 2.24, which assumes a particular form for the
spatial correlation function. The third term is just an advection term, analogous to ‘Moffat
drift’ (Moffatt 1978, sec. 7.11). The fourth term can never be negative, and is nonzero only
when the fluctuations of 𝜂 are anisotropic and not invariant under time-reversal. As noted in
section 3, the higher powers of 𝑘 neglected in equation 5.1 can cause growth of the large-
scale magnetic field even when the effective diffusivity is positive. They also ensure that the
growth rate becomes negative at small scales.
It may seem counter-intuitive that a dissipative term (𝜂) at the mesoscale leads to a dynamo

at larger scales, but it must be noted that in addition to dissipation, 𝜂 also contributes an
effective advection term (usually referred to as ‘diamagnetic pumping’; see equation 2.2)
when spatial variations at the mesoscale are properly accounted for.

6. Estimates of the dynamo numbers
Unfortunately, fluctuations of the turbulent diffusivity in astrophysical systems are
not sufficiently constrained by observations. The situation in the solar photosphere is
comparatively better, as observations of granulation give us an idea of the order of magnitude
of various quantities. To make crude estimates, we use equation A 4 which assumes a specific
form for the correlation function of 𝜂.
Let us assume 𝑙𝑐 = 3Mm(peak of the granulation’s power spectrumas observed byRoudier

&Muller 1986, fig. 2) and 𝜏𝜂 = 400 s (granule lifetime measured by Bahng & Schwarzschild
1961). The turbulent diffusivity in the photosphere is a scale-dependent quantity, which is
moreover not very well constrained (Abramenko et al. 2011, fig. 10). For the length scales
of interest, it is not unreasonable to take 𝜂 = 600 km2 s−1. Let us also assume 𝑓 = 0.1
( 𝑓 ≡

〈
𝜇2

〉
/𝜂2). We then find D1 ≈ 6 × 10−3 and D2 ≈ 4 × 10−4. These estimates appear

to rule out the operation of such a dynamo in the solar photosphere. However, we note
that assuming slightly different values of 𝑙𝑐 and 𝜏𝜂 brings the dynamo numbers to within
the regime where a large-scale field can be generated; for example, taking 𝑙𝑐 = 300 km
and 𝜏𝜂 = 900 s gives us D1 ≈ 1.4 and D2 ≈ 18. The dynamo numbers are also affected
by uncertainties in 𝑓 . Further, anisotropy can have a significant effect on the growth rates.
Better estimates of the dynamo numbers would require measurements of the spatiotemporal
correlation and strength of fluctuations of the turbulent diffusivity (or the kinetic energy) in
the solar photosphere.



12

7. Conclusions
We have used a double-averaging procedure and found that just like helicity fluctuations,
fluctuations of the turbulent kinetic energy can drive the growth of a large-scale magnetic
field. This dynamo is driven by diamagnetic pumping.
In the white-noise limit, we have found that 𝜂-fluctuations cause a reduction in the overall

turbulent diffusion, while also contributing a drift term which does not affect the growth of
the field.We have then explored effects of nonzero correlation times and found the possibility
of growingmean field solutions with the overall turbulent diffusion remaining positive.When
the fluctuations are isotropic, the growth rate of a particular Fourier mode of the large-scale
magnetic field depends on the magnitude of its wavevector and on two dynamo numbers.
Anisotropy leads to a dependence on, among other things, the direction of the wavevector.
We have studied the conditions under which this new dynamo can operate. However, the

lack of precise estimates of the quantities involved makes it hard to conclusively rule out
or support the resulting dynamo in various astrophysical scenarios. Given the prevalence of
shear in astrophysical systems, an obvious extension of the current work would be to study
the implications, for a large-scale magnetic field, of fluctuations of the turbulent kinetic
energy in a shearing background. Since inhomogeneities in the density and in the small-scale
magnetic energy also give rise to pumping (Vainshtein & Kichatinov 1983), we expect them
to have effects similar to those described here.
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Appendix A. Dynamo numbers for a simple correlation function
To physically interpret D1 and D2 (defined in equation 3.4), it is helpful to explicitly write
them out for a specific functional form of 𝑄 (see equation 2.10b). We take

𝑄(𝒚) = 𝐶 exp
(
− |𝒚 |2

2𝑙2𝑐

)
, 𝑆(𝑡) = 1

2𝜏𝜂
exp

(
− |𝑡 |
𝜏𝜂

)
(A 1)

which gives us

𝐴(0) = 𝐶 > 0 , 𝐴
(1)
𝑖

= 0 , 𝐴
(2)
𝑖 𝑗

= −𝐶
𝑙2𝑐
𝛿𝑖 𝑗 , 𝐴

(3)
𝑖

= 0 (A 2)
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If we define

𝜏 ≡
𝜏𝜂

𝑇
=
𝜏𝜂𝜂

𝑙2𝑐
, 𝑓 ≡

〈
𝜇2

〉
𝜂2

(A 3)

and use the fact that
〈
𝜇2

〉
= 𝐶/(2𝜏𝜂) (recall that 𝜇 ≡ 𝜂 − 𝜂), the dynamo numbers (equation

3.4) become

D1 ≡
9 𝑓 𝜏
4

, D2 ≡
81 𝑓 𝜏2

16
(A 4)

Note that when 𝜏 → 0,D1 remains constant, whileD2 → 0. Here, 𝑓 represents the strength
of the fluctuations of 𝜂, while 𝜏 is a scaled measure of their correlation time.
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